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ABSTRACT

Some useful properties of the majority binomial pro-

bability function

n
X n-x
f(pn) = > %0 (1-p)
- ntl
*= 72 n=1,3,5...,

0<p<l,
are derived. An important result is the‘determinapion of
a function which bounds f(p,n) and yet is easy to evaluate
numerically. Thus, a means is provided of determining the
bounding values of the majority binomial probability func-
tion for probability values much smaller than those listed

in available tables,-
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USEFUL PROPERTIES OF THE
MAJORITY BINOMIAL PROBABILITY FUNCTION

INTRODUCTION

During the writer!s research on the synthesis of reliable automata

from unreliable constituents, the majority binomial probability function,

n

£(p,n) = Z DpN(1-p)**, . n=1,3,5,..., (1)
<= n__zl 0<p<1,

: arose, This function is a generalization of the probability function

corresponding to n = 3, utilized by Von Neumann and others in conjunc-

tion with majority organs. The function, f(p,n), is a special case of

the well known cumulative binomial probability distribution function for

1,2 different volumes of tables have been published.

which at least two
In these tables the smallest entry value of the function is 10_7 and
the smallest entry value of p is 10—2. The tables are not adequate

2 and 10_7 are of

since values of p and f(p,n) much smaller than 10~
interest in automata theory and in certain other applications. Thus

a problem exists of evaluating the function without a great amount of
calculative labor. Approximating f(p,n) with a continuous function
(such as the error function) does not relieve the problem, since, even
if the approximating conditions are satisfied, the tabulated values in.

the tables of the approximating continuous functions do not cover the

range of interest.
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An explicit solution of (1) for n in terms of f and p is desirable,
since for most problems involving the majority binomial, the value of p
is given and the problem is to determine the value of n required to ob-
tain a certain value of f. However, even if n were a continuous varia-
ble, it is evident that it would not be possible to obtain an exact ex-
plicit solution for n,
The purposes of this paper are to derive for ready reference useful
properties of the majority binomial function and to find functions which
bound f(p,n) that are easy to evaluate numerically and from which a use-

ful approximation to the explicit solution for n can be obtained.

DEFINITIONS AND ASSUMPTIONS

The well known binomial probability distribution is defined as

n
E(n,r,p) = jg: ®p )", 0sps1, n=1,2,3,... (2)
X = r<n
h (n :—-—n.!__..
where ) x! (n-x) !

This function gives the probability of r or more occurrences of an
event in n independent_trials where p is the probability of occurrence
of the event in one trial.

The following relationships are not difficult to probe, but are as-

sumed to be true since they apﬁear in the literature.l’2
E(n+l,r,p) = pE(n,r-1,p) + (1-p)E(n,r,p) (3)
E(H,T’P) =1- E(n’n_r+l)1_p) ' (4)

I

_dE  _ _nyaT-lpq_ yn-r
ap = T(z)P (1-p)
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The majority binomial probability function is defined by (1) as

I

f@m)=§z P 1-p)™*  0spsl, n=1,35...
= ntl
.2

n+l

which is just E(n,r,p) with the constraints that r = >— and n is odd.

~

It follows directly from the definitions and assumptions that
f(p,n) =1 - £(1-p,n) , f(%n) =% (6)

and that f(p,n) increases if p increases.

THEOREMS 0l

Theorem I: f(p,n+2) = f(p,n) + é;ég [p(l—p)ja— [2p-1]
2

Proof: By (3)
E(n+l,r,p) = pE(n,r-1,p) + (1-p)E(n,r,p)
From this recurrence relation it follows that
E(n+1,r+1,p) = pE(n,r,p) + (1-p)E(n,r+1,p) )
and I

E(n+2,r+1,p) = pE(n+l,r,p) + (1-p)E(n+l,r+1,p) (8)

Substituting (3) and (7) into (8) we have after some manipulation

E(n+2,7+1,p) = p°E(n,r-1,p) + 2p(1-p)E(n,r,p) + (1-p)*E(n,r+1,p)  (9)

Note that n=(r-1)

E(n,r-1,p) = (21)p" H(1-p) + E(n,r,p)

and that
E(n,r,p) - (B)p (1-p)""

Substituting into (9) and simplifying, we have

E(n,r+l,p)

. . . | ‘2 -
E(n+2,r+l,p) = E(n,r,p) + p2(r§1)pr 1(l-p)n T+l _ (1-p) (2)Pr(l-p)n r

Note that (rel) = E_:‘ﬁ-:—i(ﬁ)' Substituting again, we have



E(n+2,r+1,p) = E(n,r,p) + (R)p"(1-p)" " [ﬁ%&% - (1-p)‘°‘]
= _nt+l by _ R
when r = S and n is odd, e 1 and by definition
n+l
n q 2.
E(n+2,rl+l,p) = f(p,n+2) = f(p,n) + éit% [p(l—pﬂ [?p—l]. (10).
: 5 .

Theorem iI: f(p,n) increases if n increases for any given value of
p in the interval 4 < p < 1, and f(p,n) decreases if n increases for any
given valué of p in the interval 0 < p < 3.
Proof: Since n is an odd integer by definition, the smallest

increment in any value of n is two. From theorem I we have

ntl
, 'n .
£(p,n+2) = £(p,n) + (.I}_ﬂ) [p(1-p)) & [2p-1] n=1,3,5...
2 :
therefore n+l

£(p,n+2) - £(p,n) = (Erz_lzl)[P(l’P)]—z— [20-1]

The sign of this difference is independent of n. This difference
is positive when (2p-1) > 0, which requires p >4, and it is negative

when (2p-1) < 0, which requires p <4. It follows then, that
£f(p,n+2) > f(p,n) if $ <p <1
£(p,n+2) < f(p,n) if 0 <p <3

Since this is true for any odd n, the theorem is proved.

Theorem III: f(p,n) >p if 4 <p <1 and

f(p,n) <pif 0<p<$ for n = 3,5,7,...

Proof: By theorem II f(p,n) is an increagsing function of n if
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% <p <1 and f(p,n) is a decreasing function of n if 0 < p <4 and
f(p,4) = 4. Therefore, the theorem is proved if f(p,3) > p for
¥ <p<1landf(p,3) <pfor 0<p<%.

By definition

00,3 =Y Q) a-p)>* = 32 - 27
X =2
If £(p,3) = p, then
3p2-2p3—p=0

which has solutions, p=0, p=+4, p = 1.

Qiig;ll = 6p(1-p), which is > 1 at p =}

Since f(p,3) = p in the interval 0 < p <1 only at p = % and the slope

is >latp=4, £(p,3) >p for 3 <p <1and £(p,3) <p for 0 < p <},

~which proves the theorem.

Theorem IV: 3p - 2p2 < Rn <lp - Apz,
0<p<#%
= £f(p,n+2)
where R =
n f(p’n) n= 1,3,5,00.
Proof: By (10)
B o=1- (B)p" (1-p)""F(1-p) (1-2p) ,=0tl
n f(p,n) ’ 2
Define
L(p,n) = (B)p"(1-p)" " (1-p) (1-2p)

£(p,n)
when 0 < p <%, 1-2p > 0
Therefore L(p,n) > 0O
Dividing numerator and denominator of L(p,n) by (g)pr(l-p)n_r we have ~ *



- (1-p)(1-2 _ rl(n-r)!
L= n , where a, = ! (n=x)1
"and v = —B—
and y = 7 o

Define

" n .
SEZ axyx_r , let k = x-r, then

Y

o

r+k+l:n—r—k
ar+k r+k+1

Note that ar = 1 and

By definition r = n:l therefore

~

a
r+k+1_n-~-1-2k ’
—= = <1 ifkx =20
ar+k n+2k+ 3
Hence a4k <1if k=0,1,2,...
[o o]
It is well known that E%—;ZZ yk ,y2<l
k=0

Siace a ,, s 1 and i_iL;-) <11if 0 <p <4, it is evident that .

STy T1-2p 1-p

< - =122 herefore 1, > {ImRMl=20) L (g 502 R = 1-L<4p-4p°
1-2p '

The minimum value of n, by definition, isn=1. If n = 1, then

s =1, and s >1 if n > 1, therefore s > 1.



Hence

L = SERLLSER) ¢ (1) (1-2p)

which completes the proof of the theorem.

Theorem V:
. n-1 n-1

p(3p—2p2) 2 < f(p,n) < p(Ap—Apz) 2

Proof: By definition
_ f(p,n+2 _
R, = F(p,n) and f(p,1) = p,

from which it follows that

£(p,3) = R f(p,1) = Ryp
£(p,5) = Ryf(p,3) = RyRyp
n-—
2
f(p,n) = kﬂ;l Rn-?.kp s

By .theorem IV

2 2
3p-2%p <R <ip-ip,

therefore
2 . _ 2
3p-2p SR _, <bp-dp,
and
n-1
-l 2 n-1
2, 2 2, 2
Bp-2p7) © s T R _, < (4p-40")

2

and R =1-L23p-2p

0<p<#%

n=35"7...



Hence
n-1 n-1

p(3p-2p°) * = £(p,n) < (4p-4p®) % .

n-1 n+l n+1
Theorem VI: (1-p) 2 p 2 (n+1> f(p,n) < le _2%-_.2%5_ , P<%
2 .
Proof: Let r = 2Ed  then
~
£(p.0) = Z B (19" = (1-p)" E (n><1_p
Let k = x-r, then
n-r ’ n-r
— +k _ -
£(p,n) = (1-p)" E (o (227 = (19" (@) Z 2 (12"
k=0 k=0
(rti)
where a = L It was shown in theorem IV that
T +k (;‘1)
n-r :
a (IL)k <2=R  therefore
r+k'I-p) S1-2p°
k=0
2
- 1- n 1-
) < G0 = (i) oG] ©
2 1%
Hence n+l
8\ [ep)l?
< f(o%
£(p,n) (n_z_l) l-2p

Since all the terms in the f(p,n) series are positive
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n+l n-1
n 2 2
f(p,n) > .Il.ﬂ P (1"p)
2

which completes the proof of the theorem.

. ntl
- o\ [p(1-p] ?
Theorem VII: If fu = (n+l> is taken to be the value

D) 1-2p

pf
of f(p,n), the error, e = fu—f‘, is less than I—-Il_p and the relative
_ 8
error, e, = 7= 1s less than 1-p°
u
Proof: By theorem VI fL S f< fu where
n-l ot
- 2 2
fL - (l_p) P (11_'_"_1 ’
27/
therefore
= - < -
e fu iy fu fL
and
f
L _1-2p _1-2p
= or f f
f l-p L l-p "u
u
Hence
pf,
- I e >
fu fL T-p e.

Theorem VIIIt n. Sn < Do where

L 0

(1) n,

and fo is any prescribed probability, O <

is the minimum value of n = 1,3,5,...

for which f(p,n) s f

fg <P <% .

0

-~

-
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(2) nL is the smallest odd integer which exceeds or is equal to

f

0

2 log —
ng.

L 10g(3p-2p9)

(3) n, is the smallest odd integer.which exceeds or is equal to

£

0

2 log —

og o

n! = —————p +1. (12)
log(4p-4p") |
n-1

—————

Proof: By theorem V f(p,n) < p(4p—4p2)

'
n u-1

Let £ = p(4p-4p2) 2 , and solve for n' . Then
f
0

2 log —

og 3

n' = — t 1
Log(4p-4p")

n, P2 nlu by definition, and 4p - 4p2 <1 if0<p<%;

n

fu-l u-1
2, 2 2,72
therefore f 2 p(4p-4p”) and  f(p,n ) < p(4p-4p”) S £y

hence f(p','nu) <fy.

This proves that n = n, is sufficient to guarantee that f(p,n) < fo ’

<
therefore n, = n .

By theorem V

n-1

£(p,n) > p(3p-2p7) ?
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Let fo = p(3p-2p2) 2 and solve for n'L and we have

f
2 log 59

nt, = —————+1
log(3p-2p)

It follows from the definitions of n. and n!' that n. - 2 <n! there-

L L L L’
fore since 3p - 2p2 <1,

n

L-2-1

2
2 2
fo < p(3p-2p7)

By theorem V

b .2-1
2

2
f(pJnL_z) 2 P(3P"2p ) ’ hence f(p’nL-Z) > fo .

By theorem II f(p,n) decreases as n increases; therefore if

I-2° However, the smallest in-

crement in n, is 2; therefore a necessary condition for f(p,no) = fo is

: f(p,no) < £, ny must be greater than n

n, > ny, which completes the proof of the theorem.

GRAPHICAL EVALUATION OF n,

In order to simplify calculations, let fO = lO_B, or equivalently,

B = -log £, Substituting into (11) and (12) we have

-2B -
ny = B -2 1353 +1 (13)
log(3p-2p°)
and
-2B -2 1
nt = EP 4 (14)

¢ log(Ap-Apz)
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where log 2 < -log p <B <,

For any given value of p, n&Jand n'u are functions of B only, in
which case it is evident that (13) and (14) are equations of straight
lines. The plot of (13) or (14) is then completely determined by eval-
uation at any two yalues of B.

An efficient procedure for graphical evaluation of n, assuming a
fixed value of p, 0 <p <%, is as follows:

Let n' be the axis of ordinates and B the axis of abscissas. Eval-
uate n'u at any two convenient values of B and pass a straight‘iing

through the resulting two points, remembering that points which do not

satisfy the condition, log 2 < -log p < B < », have no practical signifi-

. cance. Project values of the ordinates of the straight line, which are

not odd integers up to the first value of the ordinate which is an odd

integer. The resulting step function gives an upper bound of n, for any

value of B. Apply the same procedure to n'L to obtain,a graph of lower
bounds. This procedure is illustrated in Fig. 1. It should be noted
that for p < 10_3, the upper and lower bounds on nofcoincide for most
values of B < 25 and never differ by more than two. Therefore if n, is

3 25

taken to be the value of n and p < 10” , then f(p,n) < fo

y £g 2 10~
and n, is at most two greater than ng. If greater economy in the deter-
mination of n, is desired, then for the values of B of interest for

which n, and n. do not coincide, theorem VII can be used in most cases

to determine if nL would suffice.
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